Functional Partitioning to Optimize End-to-End Performance on Many-core Architectures

  • Authors:
  • Min Li;Sudharshan S. Vazhkudai;Ali R. Butt;Fei Meng;Xiaosong Ma;Youngjae Kim;Christian Engelmann;Galen Shipman

  • Affiliations:
  • -;-;-;-;-;-;-;-

  • Venue:
  • Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Scaling computations on emerging massive-core supercomputers is a daunting task, which coupled with the significantly lagging system I/O capabilities exacerbates applications' end-to-end performance. The I/O bottleneck often negates potential performance benefits of assigning additional compute cores to an application. In this paper, we address this issue via a novel functional partitioning (FP) runtime environment that allocates cores to specific application tasks -- checkpointing, de-duplication, and scientific data format transformation -- so that the deluge of cores can be brought to bear on the entire gamut of application activities. The focus is on utilizing the extra cores to support HPC application I/O activities and also leverage solid-state disks in this context. For example, our evaluation shows that dedicating 1 core on an oct-core machine for checkpointing and its assist tasks using FP can improve overall execution time of a FLASH benchmark on 80 and 160 cores by 43.95% and 41.34%, respectively.