Fast asynchronous consensus with optimal resilience

  • Authors:
  • Ittai Abraham;Marcos K. Aguilera;Dahlia Malkhi

  • Affiliations:
  • Microsoft Research Silicon Valley;Microsoft Research Silicon Valley;Microsoft Research Silicon Valley

  • Venue:
  • DISC'10 Proceedings of the 24th international conference on Distributed computing
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

We give randomized agreement algorithms with constant expected running time in asynchronous systems subject to process failures, where up to a minority of processes may fail. We consider three types of process failures: crash, omission, and Byzantine. For crash or omission failures, we solve consensus assuming private channels or a public-key infrastructure, respectively. For Byzantine failures, we solve weak Byzantine agreement assuming a public-key infrastructure and a broadcast primitive called weak sequenced broadcast. We show how to obtain weak sequenced broadcast using a minimal trusted platform module. The presented algorithms are simple, have optimal resilience, and have optimal asymptotic running time. They work against a sophisticated adversary that can adaptively schedule messages, processes, and failures based on the messages seen by faulty processes.