Manifold learning for biomarker discovery in MR imaging

  • Authors:
  • Robin Wolz;Paul Aljabar;Joseph V. Hajnal;Daniel Rueckert

  • Affiliations:
  • Department of Computing, Imperial College London, London, UK;Department of Computing, Imperial College London, London, UK;MRC Clinical Sciences Center, Imperial College London, London, UK;Department of Computing, Imperial College London, London, UK

  • Venue:
  • MLMI'10 Proceedings of the First international conference on Machine learning in medical imaging
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

We propose a framework for the extraction of biomarkers from low-dimensional manifolds representing inter- and intra-subject brain variation in MR image data. The coordinates of each image in such a low-dimensional space captures information about structural shape and appearance and, when a phenotype exists, about the subject's clinical state. A key contribution is that we propose a method for incorporating longitudinal image information in the learned manifold. In particular, we compare simultaneously embedding baseline and follow-up scans into a single manifold with the combination of separate manifold representations for inter-subject and intra-subject variation. We apply the proposed methods to 362 subjects enrolled in the Alzheimer's Disease Neuroimaging Initiative (ADNI) and classify healthy controls, subjects with Alzheimer's disease (AD) and subjects with mild cognitive impairment (MCI). Learning manifolds based on both the appearance and temporal change of the hippocampus, leads to correct classification rates comparable with those provided by state-of-the-art automatic segmentation estimates of hippocampal volume and atrophy. The biomarkers identified with the proposed method are data-driven and represent a potential alternative to a-priori defined biomarkers derived from manual or automated segmentations.