Large-scale support vector learning with structural kernels

  • Authors:
  • Aliaksei Severyn;Alessandro Moschitti

  • Affiliations:
  • Department of Computer Science and Engineering, University of Trento, Povo, TN, Italy;Department of Computer Science and Engineering, University of Trento, Povo, TN, Italy

  • Venue:
  • ECML PKDD'10 Proceedings of the 2010 European conference on Machine learning and knowledge discovery in databases: Part III
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we present an extensive study of the cutting-plane algorithm (CPA) applied to structural kernels for advanced text classification on large datasets. In particular, we carry out a comprehensive experimentation on two interesting natural language tasks, e.g. predicate argument extraction and question answering. Our results show that (i) CPA applied to train a non-linear model with different tree kernels fully matches the accuracy of the conventional SVM algorithm while being ten times faster; (ii) by using smaller sampling sizes to approximate subgradients in CPA we can trade off accuracy for speed, yet the optimal parameters and kernels found remain optimal for the exact SVM. These results open numerous research perspectives, e.g. in natural language processing, as they show that complex structural kernels can be efficiently used in real-world applications. For example, for the first time, we could carry out extensive tests of several tree kernels on millions of training instances. As a direct benefit, we could experiment with a variant of the partial tree kernel, which we also propose in this paper.