BioMetal glove

  • Authors:
  • Masahiro Toyoura;Tatsuya Shono;Xiaoyang Mao

  • Affiliations:
  • University of Yamanashi;University of Yamanashi;University of Yamanashi

  • Venue:
  • Proceedings of the 17th ACM Symposium on Virtual Reality Software and Technology
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

We propose a new haptic device for rendering contact sensation of virtual objects in camera-based Augmented Reality (AR) environments. Haptic feedback can help a user to intuitively sense virtual objects. For vision-impaired users, it also means a transfer from optical information observed in the cameras to haptic information. In our system, the contact between the virtual objects and the user's hand is detected with cameras. Therefore, when presenting the contact sensation, optical markers on the hand should not be occluded from the cameras so as to avoid disturbing the estimation of 3D position and posture of the hand. To fulfill such a requirement, we used BioMetal, a promising and versatile light and thin material that shrinks when electric current is applied, which provides the haptic feedback. Strings of BioMetal were stitched onto our proposed BioMetal glove. Because BioMetal does not shrink instantly when energized, a major challenge is how to deal with the time lag. We address this problem by setting buffering regions for pre-heating the BioMetal strings.