Fast and highly scalable parallel computations for fundamental matrix problems on distributed memory systems

  • Authors:
  • Keqin Li

  • Affiliations:
  • Department of Computer Science, State University of New York, New Paltz, USA 12561

  • Venue:
  • The Journal of Supercomputing
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present fast and highly scalable parallel computations for a number of important and fundamental matrix problems on distributed memory systems (DMS). These problems include matrix multiplication, matrix chain product, and computing the powers, the inverse, the characteristic polynomial, the determinant, the rank, the Krylov matrix, and an LU- and a QR-factorization of a matrix, and solving linear systems of equations. Our highly scalable parallel computations for these problems are based on a highly scalable implementation of the fastest sequential matrix multiplication algorithm on DMS. We show that compared with the best known parallel time complexities on parallel random access machines (PRAM), the most powerful but unrealistic shared memory model of parallel computing, our parallel matrix computations achieve the same speeds on distributed memory parallel computers (DMPC), and have an extra polylog factor in the time complexities on DMS with hypercubic networks. Furthermore, our parallel matrix computations are fully scalable on DMPC and highly scalable over a wide range of system size on DMS with hypercubic networks. Such fast (in terms of parallel time complexity) and highly scalable (in terms of our definition of scalability) parallel matrix computations were rarely seen before on any distributed memory systems.