Integration of preferences in hypervolume-based multiobjective evolutionary algorithms by means of desirability functions

  • Authors:
  • Tobias Wagner;Heike Trautmann

  • Affiliations:
  • Institute of Machining Technology, Technische Universität Dortmund, Dortmund, Germany;Department of Computational Statistics, Technische Universität Dortmund, Dortmund, Germany

  • Venue:
  • IEEE Transactions on Evolutionary Computation - Special issue on preference-based multiobjective evolutionary algorithms
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, a concept for efficiently approximating the practically relevant regions of the Pareto front (PF) is introduced. Instead of the original objectives, desirability functions (DFs) of the objectives are optimized, which express the preferences of the decision maker. The original problem formulation and the optimization algorithm do not have to be modified. DFs map an objective to the domain [0, 1] and nonlinearly increase with better objective quality. By means of this mapping, values of different objectives and units become comparable. A biased distribution of the solutions in the PF approximation based on different scalings of the objectives is prevented. Thus, we propose the integration of DFs into the S-metric selection evolutionary multiobjective algorithm. The transformation ensures the meaning of the hypervolumes internally computed. Furthermore, it is shown that the reference point for the hypervolume calculation can be set intuitively. The approach is analyzed using standard test problems. Moreover, a practical validation by means of the optimization of a turning process is performed.