Improving the round complexity of traitor tracing schemes

  • Authors:
  • Aggelos Kiayias;Serdar Pehlivanoglu

  • Affiliations:
  • Computer Science and Engineering, University of Connecticut Storrs, CT;Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore

  • Venue:
  • ACNS'10 Proceedings of the 8th international conference on Applied cryptography and network security
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

A traitor tracing scheme is a multiuser encryption that has a built-in key leakage deterrence mechanism : the sender is capable of utilizing a tracing process that can interact with any adversarial decoder and reveal the identities of the users whose keys are employed by the decoder. A number of desired design goals have been put forth for traitor tracing schemes, notably the minimization of the length of the ciphertexts, the length of the encryption key and the storage for private keys. An important efficiency parameter that is not as widely investigated is the round complexity of the tracing process, i.e., the number of rounds of interaction that is required for the tracing process to terminate. In this work we provide (1) a general formalization of this important design consideration, (2) a novel tracing procedure that exhibits an asymptotic improvement over the previously known approaches. Our first result is achieved by casting the tracing process as a game between the tracer and the adversary where the objective of the tracer is to reveal the identity of the corrupted users while the adversary wishes to prevent that while still meeting a minimum functionality requirement. The second result involves a novel application of fingerprinting codes.