Enabling high-bandwidth vehicular content distribution

  • Authors:
  • Upendra Shevade;Yi-Chao Chen;Lili Qiu;Yin Zhang;Vinoth Chandar;Mi Kyung Han;Han Hee Song;Yousuk Seung

  • Affiliations:
  • The University of Texas at Austin;The University of Texas at Austin;The University of Texas at Austin;The University of Texas at Austin;The University of Texas at Austin;The University of Texas at Austin;The University of Texas at Austin;The University of Texas at Austin

  • Venue:
  • Proceedings of the 6th International COnference
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present VCD, a novel system for enabling high-bandwidth content distribution in vehicular networks. In VCD, a vehicle opportunistically communicates with nearby access points (APs) to download the content of interest. To fully take advantage of such transient contact with APs, we proactively push content to the APs that the vehicles will likely visit in the near future. In this way, vehicles can enjoy the full wireless capacity instead of being bottle-necked by the Internet connectivity, which is either slow or even unavailable. We develop a new algorithm for predicting the APs that will soon be visited by the vehicles. We then develop a replication scheme that leverages the synergy among (i) Internet connectivity (which is persistent but has limited coverage and low bandwidth), (ii) local wireless connectivity (which has high bandwidth but transient duration), (iii) vehicular relay connectivity (which has high bandwidth but high delay), and (iv) mesh connectivity among APs (which has high bandwidth but low coverage). We demonstrate the effectiveness of VCD system using trace-driven simulation and Emulab emulation based on real taxi traces. We further deploy VCD in two vehicular networks: one using 802.11b and the other using 802.11n, to demonstrate its effectiveness.