Vehicular opportunistic communication under the microscope

  • Authors:
  • David Hadaller;Srinivasan Keshav;Tim Brecht;Shubham Agarwal

  • Affiliations:
  • University of Waterloo, Waterloo, ON, Canada;University of Waterloo, Waterloo, ON, Canada;University of Waterloo, Waterloo, ON, Canada;AirTight Networks Pvt. Ltd., Pune, India

  • Venue:
  • Proceedings of the 5th international conference on Mobile systems, applications and services
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

We consider the problem of providing vehicular Internet access using roadside 802.11 access points. We build on previous work in this area [18, 8, 5, 11] with an extensive experimental analysis of protocol operation at a level of detail not previously explored. We report on data gathered with four capture devices from nearly 50 experimental runs conducted with vehicles on a rural highway. Our three primary contributions are: (1) We experimentally demonstrate that, on average, current protocols only achieve 50% of the overall throughput possible in this scenario. In particular, even with a streamlined connection setup procedure that does not use DHCP, high losses early in a vehicular connection are responsible for the loss of nearly 25% of overall throughput, 15% of the time. (2) We quantify the effects of ten problems caused by the mechanics of existing protocols that are responsible for this throughput loss; and (3) We recommend best practices for using vehicular opportunistic connections. Moreover, we show that overall throughput could be significantly improved if environmental information was made available to the 802.11 MAC and to TCP. The central messagein this paper is that wireless conditions in the vicinity of a roadside access point are predictable, and by exploiting this information, vehicular opportunistic access can be greatly improved.