A theoretical framework for LMS MIMO communication systems performance analysis

  • Authors:
  • Giuseppa Alfano;Antonio De Maio;Antonia Maria Tulino

  • Affiliations:
  • DELEN, Politecnico di Torino, Torino, Italy;Dipartimento di Ingegneria Biomedica Elettronica e delle Telecomunicazioni, Universitá degli Studi di Napoli "Federico II", Napoli, Italy;Dipartimento di Ingegneria Biomedica Elettronica e delle Telecomunicazioni, Universitá degli Studi di Napoli "Federico II", Napoli, Italy and Department of Wireless Communications, Bell Labor ...

  • Venue:
  • IEEE Transactions on Information Theory
  • Year:
  • 2010

Quantified Score

Hi-index 754.84

Visualization

Abstract

A statistical model for Land Mobile Satellite (LMS) channels, where transmitters and receivers are equipped with multiple antennas, is introduced. Several spectral statistics are given, which allow the theoretical performance analysis of the newly proposed channel model from both a communication and an information-theoretic point of view. Specifically, joint and marginal statistics of the squared singular-values of the channel matrix are evaluated, paving the way for the performance analysis under ergodic and nonergodic assumptions on the channel behavior. The capacity-achieving input covariance matrix, and the corresponding ergodic capacity, assuming perfect receive-side information but making different assumptions on the amount of channel knowledge at the transmitter, are derived. We obtain exact results, but for the case when perfect channel knowledge is assumed at both ends of the link, for which we provide an upper bound to the ergodic capacity. In the nonergodic scenario, we compute the outage probability in absence of power-control, and discuss the asymptotic Gaussianity of the mutual information, which strongly depends on the overall number of degrees of freedom available on the channel. Design guidelines for multi-antenna LMS channels are gained studying the low signal-to-noise ratio (SNR) behavior of the capacity, still under the assumption of absence of knowledge of the channel matrix (or its statistics) at the transmitter. The results are illustrated through several examples, aimed at assessing the impact on the performance of the diversity order and/or the line-of-sight (LOS) fluctuations.