Outage-efficient strategies for multiuser MIMO networks with channel distribution information

  • Authors:
  • Sagnik Ghosh;Bhaskar D. Rao;James R. Zeidler

  • Affiliations:
  • Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA;Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA;Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA

  • Venue:
  • IEEE Transactions on Signal Processing
  • Year:
  • 2010

Quantified Score

Hi-index 35.68

Visualization

Abstract

In this paper, we examine single user and multiuser multiple-input multiple-output (MIMO) beamforming networks with channel distribution information (CDI). Since CDI changes infrequently compared to channel state information (CSI), algorithms based on CDI can achieve significant savings in feedback compared to algorithms based on CSI. With CDI, we can only guarantee quality of service for a specified outage probability in the network. Assuming correlated Rayleigh fading on all the links, we derive a closed-form expression for the outage probability. Then, using this expression, we derive algorithms for joint transmit/receive beamforming and power control to minimize the weighted sum power in the network while guaranteeing these outage probabilities. For both single-user and multiuser MIMO scenarios, we present optimal algorithms under the Kronecker model assumption, and we present near-optimal algorithms assuming general correlation structures on the links. We then show that using these algorithms based on CDI, if we are willing to accept given outages on the links, we can achieve comparable power usage in the network relative to algorithms based on CSI.