Applying a second-kind boundary integral equation for surface tractions in Stokes flow

  • Authors:
  • Eric E. Keaveny;Michael J. Shelley

  • Affiliations:
  • Applied Mathematics Laboratory, Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA;Applied Mathematics Laboratory, Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA

  • Venue:
  • Journal of Computational Physics
  • Year:
  • 2011

Quantified Score

Hi-index 31.45

Visualization

Abstract

A second-kind integral equation for the tractions on a rigid body moving in a Stokesian fluid is established using the Lorentz reciprocal theorem and an integral equation for a double-layer density. A second-order collocation method based on the trapezoidal rule is applied to the integral equation after appropriate singularity reduction. For translating prolate spheroids with various aspect ratios, the scheme is used to explore the effects of the choice of completion flow on the error in the numerical solution, as well as the condition number of the discretized integral operator. The approach is applied to obtain the velocity and viscous dissipation of rotating helices of circular cross-section. These results are compared with both local and non-local slender-body theories. Motivated by the design of artificial micro-swimmers, similar computations are performed on previously unstudied helices of non-circular cross-section to determine the dependence of the velocity and propulsive efficiency on the cross-section aspect ratio and orientation. Overall, we find that this formulation provides a stable numerical approach with which to solve the flow problem while simultaneously obtaining the surface tractions and that the appropriate choice of completion flow provides both increased accuracy and efficiency. Additionally, this approach naturally avails itself to known fast summation techniques and higher-order quadrature schemes.