An advanced algorithm for illumination-based synchronization of high-speed vision sensors in dynamic scenes

  • Authors:
  • Lei Hou;Shingo Kagami;Koichi Hashimoto

  • Affiliations:
  • Graduate School of Information Sciences, Tohoku University, Sendai, Japan;Graduate School of Information Sciences, Tohoku University, Sendai, Japan;Graduate School of Information Sciences, Tohoku University, Sendai, Japan

  • Venue:
  • ICIRA'10 Proceedings of the Third international conference on Intelligent robotics and applications - Volume Part II
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

To acquire images of dynamic scenes from multiple points of view simultaneously, the acquisition time of vision sensors should be synchronized. In this paper, an advanced illumination-based synchronization method derived from the phase-locked loop (PLL) algorithm is proposed and evaluated. To remove the dependency of system behavior on the amplitude of the illumination, which can be affected by moving objects or the positional relation of the illumination and objects, the feedback amount of the PLL system is normalized per frame by the estimated amplitude of the reference signal to generate stable synchronization even in highly dynamic scenes. Both simulated results and real world experiments demonstrated successful synchronization that a 1,000-Hz frame rate vision sensor was successfully synchronized to both direct and indirect illumination with only 28-µs peak-to-peak jitters.