The flooding time synchronization protocol

  • Authors:
  • Miklós Maróti;Branislav Kusy;Gyula Simon;Ákos Lédeczi

  • Affiliations:
  • Institute for Software Integrated Systems, Vanderbilt University;Institute for Software Integrated Systems, Vanderbilt University;Institute for Software Integrated Systems, Vanderbilt University;Institute for Software Integrated Systems, Vanderbilt University

  • Venue:
  • SenSys '04 Proceedings of the 2nd international conference on Embedded networked sensor systems
  • Year:
  • 2004

Quantified Score

Hi-index 0.07

Visualization

Abstract

Wireless sensor network applications, similarly to other distributed systems, often require a scalable time synchronization service enabling data consistency and coordination. This paper describes the Flooding Time Synchronization Protocol (FTSP), especially tailored for applications requiring stringent precision on resource limited wireless platforms. The proposed time synchronization protocol uses low communication bandwidth and it is robust against node and link failures. The FTSP achieves its robustness by utilizing periodic flooding of synchronization messages, and implicit dynamic topology update. The unique high precision performance is reached by utilizing MAC-layer time-stamping and comprehensive error compensation including clock skew estimation. The sources of delays and uncertainties in message transmission are analyzed in detail and techniques are presented to mitigate their effects. The FTSP was implemented on the Berkeley Mica2 platform and evaluated in a 60-node, multi-hop setup. The average per-hop synchronization error was in the one microsecond range, which is markedly better than that of the existing RBS and TPSN algorithms.