Practical asynchronous neighbor discovery and rendezvous for mobile sensing applications

  • Authors:
  • Prabal Dutta;David Culler

  • Affiliations:
  • University of California, Berkeley, Berkeley, CA, USA;University of California, Berkeley, Berkeley, CA, USA

  • Venue:
  • Proceedings of the 6th ACM conference on Embedded network sensor systems
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present Disco, an asynchronous neighbor discovery and rendezvous protocol that allows two or more nodes to operate their radios at low duty cycles (e.g. 1%) and yet still discover and communicate with one another during infrequent, opportunistic encounters without requiring any prior synchronization information. The key challenge is to operate the radio at a low duty cycle but still ensure that discovery is fast, reliable, and predictable over a range of operating conditions. Disco nodes pick a pair of prime numbers such that the sum of their reciprocals is equal to the desired radio duty cycle. Each node increments a local counter with a globallyfixed period. If a node's local counter value is divisible by either of its primes, then the node turns on its radio for one period. This protocol ensures that two nodes will have some overlapping radio on-time within a bounded number of periods, even if nodes independently set their own duty cycle. Once a neighbor is discovered, and its wakeup schedule known, rendezvous is just a matter of being awake during the neighbor's next wakeup period,for synchronous rendezvous, or during an overlapping wake period, for asynchronous rendezvous.