An Automatic Presence Service for Low Duty-Cycled Mobile Sensor Networks

  • Authors:
  • Shouwen Lai;Binoy Ravindran

  • Affiliations:
  • Qualcomm Inc, San Diego, USA 92121;ECE Department, Virginia Tech, Blacksburg, USA 24061

  • Venue:
  • Mobile Networks and Applications
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

We consider providing presence service for duty-cycled wireless sensor networks through a multihop approach. The presence service is to ensure automatic network monitoring by which each node would know whether the sink node is reachable or not. Towards providing such presence service, we tackle three problems: 1) efficient neighbor discovery due to not-always-awake nature of duty-cycling and the mobile environment, 2) light presence message passing from the sink node to all reachable nodes given broadcasting is expensive and difficult in an embedded duty-cycling network, and 3) automatic network monitoring if there is node failure and network partition. In our protocol, in order to save power consumption, an online node which is reachable from the sink node only book-keeps the broadcast schedule of its parent in a breadth-first-search spanning tree in order to trace the online status all along. The offline node which is not reachable from the sink node stays awake periodically based on quorum-based wakeup scheduling, and probes the beacons which may come from online nodes. The presence protocol can automatically detect link failure or network partition, and it can also automatically recover online status for each sensor node if there is a path to the sink node, which is significant for applications that are sensitive to end-to-end latency constraints. The presence protocol proposed is implemented through a layered approach so that it is independent from any specific MAC and routing protocols. We make extensive simulations in order to validate the energy efficiency and reliability of our design.