Energy aware fault tolerant routing in two-tiered sensor networks

  • Authors:
  • Ataul Bari;Arunita Jaekel;Subir Bandyopadhyay

  • Affiliations:
  • School of Computer Science, University of Windsor, Windsor, ON, Canada;School of Computer Science, University of Windsor, Windsor, ON, Canada;School of Computer Science, University of Windsor, Windsor, ON, Canada

  • Venue:
  • ICDCN'11 Proceedings of the 12th international conference on Distributed computing and networking
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Design of fault-tolerant sensor networks is receiving increasing attention in recent times. In this paper we point out that simply ensuring that a sensor network can tolerate fault (s) is not sufficient. It is also important to ensure that the network remains viable for the longest possible time, even if a fault occurs. We have focussed on the problem of designing 2-tier sensor networks using relay nodes as cluster heads. Our objective is to ensure that the network has a communication strategy that extends, as much as possible, the period for which the network remains operational when there is a single relay node failure. We have described an Integer Linear Program (ILP) formulation and have used this formulation to study the effect of single faults. We have compared our results to those obtained using standard routing protocols (Minimum Transmission Energy Model (MTEM)) and the Minimum Hop Routing Model (MHRM)). We have shown that our routing algorithm performs significantly better, compared to the MTEM and the MHRM.