Efficient multipath communication for time-critical applications in underwater acoustic sensor networks

  • Authors:
  • Zhong Zhou;Zheng Peng;Jun-Hong Cui;Zhijie Shi

  • Affiliations:
  • Computer Science and Engineering Department, University of Connecticut, Storrs, CT;Computer Science and Engineering Department, University of Connecticut, Storrs, CT;Computer Science and Engineering Department, University of Connecticut, Storrs, CT;Computer Science and Engineering Department, University of Connecticut, Storrs, CT

  • Venue:
  • IEEE/ACM Transactions on Networking (TON)
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Due to the long propagation delay and high error rate of acoustic channels, it is very challenging to provide reliable data transfer for time-critical applications in an energy-efficient way. On the one hand, traditional retransmission upon failure usually introduces very large end-to-end delay and is thus not proper for time-critical services. On the other hand, common approaches without retransmission consume lots of energy. In this paper, we propose a new multipath power-control transmission (MPT) scheme, which can guarantee certain end-to-end packet error rate while achieving a good balance between the overall energy efficiency and the end-to-end packet delay. MPT smartly combines power control with multipath routing and packet combining at the destination. With carefully designed power-control strategies, MPT consumes much less energy than the conventional one-path transmission scheme without retransmission. Besides, since no hop-by-hop retransmission is allowed, MPT introduces much shorter delays than the traditional one-path scheme with retransmission. We conduct extensive simulations to evaluate the performance of MPT. Our results show that MPT is highly energy-efficient with low end-to-end packet delays.