A game theoretic formulation of the service provisioning problem in cloud systems

  • Authors:
  • Danilo Ardagna;Barbara Panicucci;Mauro Passacantando

  • Affiliations:
  • Politecnico di Milano, Milan, Italy;Politecnico di Milano, Milan, Italy;Università di Pisa, Pisa, Italy

  • Venue:
  • Proceedings of the 20th international conference on World wide web
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Cloud computing is an emerging paradigm which allows the on-demand delivering of software, hardware, and data as services. As cloud-based services are more numerous and dynamic, the development of efficient service provisioning policies become increasingly challenging. Game theoretic approaches have shown to gain a thorough analytical understanding of the service provisioning problem. In this paper we take the perspective of Software as a Service (SaaS) providers which host their applications at an Infrastructure as a Service (IaaS) provider. Each SaaS needs to comply with quality of service requirements, specified in Service Level Agreement (SLA) contracts with the end-users, which determine the revenues and penalties on the basis of the achieved performance level. SaaS providers want to maximize their revenues from SLAs, while minimizing the cost of use of resources supplied by the IaaS provider. Moreover, SaaS providers compete and bid for the use of infrastructural resources. On the other hand, the IaaS wants to maximize the revenues obtained providing virtualized resources. In this paper we model the service provisioning problem as a Generalized Nash game, and we propose an efficient algorithm for the run time management and allocation of IaaS resources to competing SaaSs.