Brief paper: Pseudospectral methods for solving infinite-horizon optimal control problems

  • Authors:
  • Divya Garg;William W. Hager;Anil V. Rao

  • Affiliations:
  • -;-;-

  • Venue:
  • Automatica (Journal of IFAC)
  • Year:
  • 2011

Quantified Score

Hi-index 22.14

Visualization

Abstract

An important aspect of numerically approximating the solution of an infinite-horizon optimal control problem is the manner in which the horizon is treated. Generally, an infinite-horizon optimal control problem is approximated with a finite-horizon problem. In such cases, regardless of the finite duration of the approximation, the final time lies an infinite duration from the actual horizon at t=+~. In this paper we describe two new direct pseudospectral methods using Legendre-Gauss (LG) and Legendre-Gauss-Radau (LGR) collocation for solving infinite-horizon optimal control problems numerically. A smooth, strictly monotonic transformation is used to map the infinite time domain t@?[0,~) onto a half-open interval @t@?[-1,1). The resulting problem on the finite interval is transcribed to a nonlinear programming problem using collocation. The proposed methods yield approximations to the state and the costate on the entire horizon, including approximations at t=+~. These pseudospectral methods can be written equivalently in either a differential or an implicit integral form. In numerical experiments, the discrete solution exhibits exponential convergence as a function of the number of collocation points. It is shown that the map @f:[-1,+1)-[0,+~) can be tuned to improve the quality of the discrete approximation.