Exploring cortical folding pattern variability using local image features

  • Authors:
  • Rishi Rajalingham;Matthew Toews;Louis Collins;Tal Arbel

  • Affiliations:
  • McGill University;Brigham and Women's Hospital, Harvard Medical School;Montreal Neurological Institute, McGill University;McGill University

  • Venue:
  • MCV'10 Proceedings of the 2010 international MICCAI conference on Medical computer vision: recognition techniques and applications in medical imaging
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

The variability in cortical morphology across subjects makes it difficult to develop a general atlas of cortical sulci. In this paper, we present a data-driven technique for automatically learning cortical folding patterns from MR brain images. A local image feature-based model is learned using machine learning techniques, to describe brain images as a collection of independent, co-occurring, distinct, localized image features which may not be present in all subjects. The choice of feature type (SIFT, KLT, Harris-affine) is explored with regards to identifying cortical folding patterns while also uncovering their group-related variability across subjects. The model is built on lateral volume renderings from the ICBM dataset, and applied to hemisphere classification in order to identify patterns of lateralization based on each feature type.