Precise and efficient parametric path analysis

  • Authors:
  • Ernst Althaus;Sebastian Altmeyer;Rouven Naujoks

  • Affiliations:
  • Johannes-Gutenberg-Universität Mainz, Mainz, Germany;Saarland University, Saarbrücken, Germany;Max-Planck-Institut für Informatik, Saarbrücken, Germany

  • Venue:
  • Proceedings of the 2011 SIGPLAN/SIGBED conference on Languages, compilers and tools for embedded systems
  • Year:
  • 2011

Quantified Score

Hi-index 0.02

Visualization

Abstract

Hard real-time systems require tasks to finish in time. To guarantee the timeliness of such a system, static timing analyses derive upper bounds on the worst-case execution time (WCET) of tasks. There are two types of timing analyses: numeric and parametric. A numeric analysis derives a numeric timing bound and, to this end, assumes all information such as loop bounds to be given a priori. If these bounds are unknown during analysis time, a parametric analysis can compute a timing formula parametric in these variables. A performance bottleneck of timing analyses, numeric and especially parametric, is the so-called path analysis, which determines the path in the analyzed task with the longest execution time bound. In this paper, we present a new approach to path analysis. This approach exploits the often rather regular structure of software for hard real-time and safety-critical systems. As we show in the evaluation of this paper, we strongly improve upon former techniques in terms of precision and runtime in the parametric case. Even in the numeric case, the approach competes with state-of-the-art techniques and may be an alternative to commercial tools employed for path analysis.