On robust online scheduling algorithms

  • Authors:
  • Michael Gatto;Peter Widmayer

  • Affiliations:
  • ETH Zurich, Zurich, Switzerland;ETH Zurich, Zurich, Switzerland

  • Venue:
  • Journal of Scheduling
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

While standard parallel machine scheduling is concerned with good assignments of jobs to machines, we aim to understand how the quality of an assignment is affected if the jobs' processing times are perturbed and therefore turn out to be longer (or shorter) than declared. We focus on online scheduling with perturbations occurring at any time, such as in railway systems when trains are late. For a variety of conditions on the severity of perturbations, we present bounds on the worst case ratio of two makespans. For the first makespan, we let the online algorithm assign jobs to machines, based on the non-perturbed processing times. We compute the makespan by replacing each job's processing time with its perturbed version while still sticking to the computed assignment. The second is an optimal offline solution for the perturbed processing times. The deviation of this ratio from the competitive ratio of the online algorithm tells us about the "price of perturbations". We analyze this setting for Graham's algorithm, and among other bounds show a competitive ratio of 2 for perturbations decreasing the processing time of a job arbitrarily, and a competitive ratio of less than 2.5 for perturbations doubling the processing time of a job. We complement these results by providing lower bounds for any online algorithm in this setting. Finally, we propose a risk-aware online algorithm tailored for the possible bounded increase of the processing time of one job, and we show that this algorithm can be worse than Graham's algorithm in some cases.