Electromagnetic tracker measurement error simulation and tool design

  • Authors:
  • Gregory S. Fischer;Russell H. Taylor

  • Affiliations:
  • Johns Hopkins University, CISST ERC, Baltimore, Maryland;Johns Hopkins University, CISST ERC, Baltimore, Maryland

  • Venue:
  • MICCAI'05 Proceedings of the 8th international conference on Medical image computing and computer-assisted intervention - Volume Part II
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

Developing electromagnetically (EM) tracked tools can be very time consuming. Tool design traditionally takes many iterations, each of which requires construction of a physical tool and performing lengthy experiments. We propose a simulator that allows tools to be virtually designed and tested before ever being physically built. Both tool rigid body (RB) configurations and reference RB configurations are configured; the reference RB can be located anywhere in the field, and the tool is virtually moved around the reference in userspecified pattern. Sensor measurements of both RBs are artificially distorted according to a previously acquired error field mapping, and the 6-DOF frames of the Tool and Reference are refit to the distorted sensors. It is possible to predict the tool tip registration error for a particular tool and coordinate reference frame (CRF) in a particular scenario before ever even building the tools.