Live gang migration of virtual machines

  • Authors:
  • Umesh Deshpande;Xiaoshuang Wang;Kartik Gopalan

  • Affiliations:
  • Binghamton University, Binghamton, NY, USA;Binghamton University, Binghamton, NY, USA;Binghamton University, Binghamton, NY, USA

  • Venue:
  • Proceedings of the 20th international symposium on High performance distributed computing
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper addresses the problem of simultaneously migrating a group of co-located and live virtual machines (VMs), i.e, VMs executing on the same physical machine. We refer to such a mass simultaneous migration of active VMs as "live gang migration". Cluster administrators may often need to perform live gang migration for load balancing, system maintenance, or power savings. Application performance requirements may dictate that the total migration time, network traffic overhead, and service downtime, be kept minimal when migrating multiple VMs. State-of-the-art live migration techniques optimize the migration of a single VM. In this paper, we optimize the simultaneous live migration of multiple co-located VMs. We present the design, implementation, and evaluation of a de-duplication based approach to perform concurrent live migration of co-located VMs. Our approach transmits memory content that is identical across VMs only once during migration to significantly reduce both the total migration time and network traffic. Using the QEMU/KVM platform, we detail a proof-of-concept prototype implementation of two types of de-duplication strategies (at page level and sub-page level) and a differential compression approach to exploit content similarity across VMs. Evaluations over Gigabit Ethernet with various types of VM workloads demonstrate that our prototype for live gang migration can achieve significant reductions in both network traffic and total migration time.