An Automation System of Rooftop Detection and 3D Building Modeling from Aerial Images

  • Authors:
  • Fanhuai Shi;Yongjian Xi;Xiaoling Li;Ye Duan

  • Affiliations:
  • University of Missouri-Columbia, Columbia, USA 65201 and Shanghai Jiao Tong University, Shanghai, China 200240;University of Missouri-Columbia, Columbia, USA 65201;University of Missouri-Columbia, Columbia, USA 65201;University of Missouri-Columbia, Columbia, USA 65201

  • Venue:
  • Journal of Intelligent and Robotic Systems
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents a prototype system of rooftop detection and 3D building modeling from aerial images. In this system, without the knowledge of the position and orientation information of the aerial vehicle a priori, the parameters of the camera pose and ground plane are first estimated by simple human---computer interaction. Next, after an over-segmentation of the aerial image by the Mean-Shift algorithm, the rooftop regions are coarsely detected by integrating multi-scale SIFT-like feature vectors with SVM-based visual object recognition. 2D cues alone however might not always be sufficient to separate regions such as parking lots from building roofs. Thus in order to further refine the accuracy of the roof-detection result and remove the misclassified non-rooftop regions such as parking lots, we further resort to 3D depth information estimated based on multi-view geometry. More specifically, we determine whether a candidate region is a rooftop or not according to its height information relative to the ground plane, whereas the candidate region's height information is obtained by a novel, hierarchical, asymmetry correlation-based corner matching scheme. The output of the system will be a water-tight triangle mesh based 3D building model texture mapped with the aerial images. We developed an interactive 3D viewer based on OpenGL and C+驴+ to allow the user to virtually navigate the reconstructed 3D scene with mouse and keyboard. Experimental results are shown on real aerial scenes.