Entanglement and its role in Shor's algorithm

  • Authors:
  • Vivien M. Kendon;William J. Munro

  • Affiliations:
  • School of Physics and Astronomy, University of Leeds, UK and QOLS, Optics, Blackett Laboratory, Imperial College London, UK;Hewlett-Packard Laboratories, Bristol, UK and QOLS, Optics, Blackett Laboratory, Imperial College London, UK

  • Venue:
  • Quantum Information & Computation
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Entanglement has been termed a critical resource for quantum information processing and is thought to be the reason that certain quantum algorithms, such as Shor's factoring algorithm, can achieve exponentially better performance than their classical counterparts. The nature of this resource is still not fully understood: here we use numerical simulation to investigate how entanglement between register qubits varies as Shor's algorithm is run on a quantum computer. The shifting patterns in the entanglement are found to relate to the choice of basis for the quantum Fourier transform.