Quantum computation from a quantum logical perspective

  • Authors:
  • Jeffrey Bub

  • Affiliations:
  • Philosophy Department, University of Maryland, College Park, Maryland

  • Venue:
  • Quantum Information & Computation
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

It is well-known that Shor's factorization algorithm, Simon's period-finding algorithm, and Deutsch's original XOR algorithm can all be formulated as solutions to a hidden subgroup problem. Here the salient features of the information-processing in the three algorithms are presented from a different perspective, in terms of the way in which the algorithms exploit the non-Boolean quantum logic represented by the projective geometry of Hilbert space. From this quantum logical perspective, the XOR algorithm appears directly as a special case of Simon's algorithm, and all three algorithms can be seen as exploiting the non-Boolean logic represented by the subspace structure of Hilbert space in a similar way. Essentially, a global property of a function (such as a period, or a disjunctive property) is encoded as a subspace in Hilbert space representing a quantum proposition, which can then be efficiently distinguished from alternative propositions, corresponding to alternative global properties, by a measurement (or sequence of measurements) that identifies the target proposition as the proposition represented by the subspace containing the final state produced by the algorithm.