A semi-preemptive garbage collector for solid state drives

  • Authors:
  • Junghee Lee;Youngjae Kim;Galen M. Shipman;Sarp Oral;Feiyi Wang;Jongman Kim

  • Affiliations:
  • Electrical and Computer Engineering, Georgia Institute of Technology;National Center for Computational Sciences, Oak Ridge National Laboratory;National Center for Computational Sciences, Oak Ridge National Laboratory;National Center for Computational Sciences, Oak Ridge National Laboratory;National Center for Computational Sciences, Oak Ridge National Laboratory;Electrical and Computer Engineering, Georgia Institute of Technology

  • Venue:
  • ISPASS '11 Proceedings of the IEEE International Symposium on Performance Analysis of Systems and Software
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

NAND flash memory is a preferred storage media for various platforms ranging from embedded systems to enterprise-scale systems. Flash devices do not have any mechanical moving parts and provide low-latency access. They also require less power compared to rotating media. Unlike hard disks, flash devices use out-of-update operations and they require a garbage collection (GC) process to reclaim invalid pages to create free blocks. This GC process is a major cause of performance degradation when running concurrently with other I/O operations as internal bandwidth is consumed to reclaim these invalid pages. The invocation of the GC process is generally governed by a low watermark on free blocks and other internal device metrics that different workloads meet at different intervals. This results in I/O performance that is highly dependent on workload characteristics. In this paper, we examine the GC process and propose a semi-preemptive GC scheme that can preempt on-going GC processing and service pending I/O requests in the queue. Moreover, we further enhance flash performance by pipelining internal GC operations and merge them with pending I/O requests whenever possible. Our experimental evaluation of this semi-preemptive GC sheme with realistic workloads demonstrate both improved performance and reduced performance variability. Write-dominant workloads show up to a 66.56% improvement in average response time with a 83.30% reduced variance in response time compared to the non-preemptive GC scheme.