Channel assignment in virtual cut-through switching based wireless mesh networks

  • Authors:
  • Dola Saha;Aveek Dutta;Dirk Grunwald;Douglas Sicker

  • Affiliations:
  • University of Colorado, Boulder, CO;University of Colorado, Boulder, CO;University of Colorado, Boulder, CO;University of Colorado, Boulder, CO

  • Venue:
  • ICDCN'10 Proceedings of the 11th international conference on Distributed computing and networking
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Conventional wireless networks employ a contention based channel access mechanism, which not only imposes high latency but also reduces goodput of the network. Lack of interference estimation algorithms over the entire network results in unpredictable collision, packet loss and retransmissions. Advances in multicarrier modulation techniques enable us to group subcarriers into orthogonal subchannels and treat them separately as information carriers. While this provides an increased number of non-interfering channels, intelligent utilization of the given spectrum is also required. In this paper, a solution for decreasing latency in mesh networks has been proposed by aptly incorporating a virtual cut-through switching technique to route packets in the network. To alleviate the impact of interference on packet reception, we also propose a fast pair-wise interference detection scheme, which is used for channel allocation. The cumulative performance of the proposed protocol shows improvement over existing Wi-Fi based mesh networks that provide a motivating platform for future protocol developments using this technique.