Deriving a near-optimal power management policy using model-free reinforcement learning and Bayesian classification

  • Authors:
  • Yanzhi Wang;Qing Xie;Ahmed Ammari;Massoud Pedram

  • Affiliations:
  • University of Southern California, Los Angeles, CA;University of Southern California, Los Angeles, CA;National Institute of the Applied Sciences and of the Technology (INSAT),Tunis cedex, Tunisia;University of Southern California, Los Angeles, CA

  • Venue:
  • Proceedings of the 48th Design Automation Conference
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

To cope with the variations and uncertainties that emanate from hardware and application characteristics, dynamic power management (DPM) frameworks must be able to learn about the system inputs and environment and adjust the power management policy on the fly. In this paper we present an online adaptive DPM technique based on model-free reinforcement learning (RL), which is commonly used to control stochastic dynamical systems. In particular, we employ temporal difference learning for semi-Markov decision process (SMDP) for the model-free RL. In addition a novel workload predictor based on an online Bayes classifier is presented to provide effective estimates of the workload states for the RL algorithm. In this DPM framework, power and latency tradeoffs can be precisely controlled based on a user-defined parameter. Experiments show that amount of average power saving (without any increase in the latency) is up to 16.7% compared to a reference expert-based approach. Alternatively, the per-request latency reduction without any power consumption increase is up to 28.6% compared to the expert-based approach.