Adaptive Riemannian metrics for improved geodesic tracking of white matter

  • Authors:
  • Xiang Hao;Ross T. Whitaker;P. Thomas Fletcher

  • Affiliations:
  • Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT;Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT;Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT

  • Venue:
  • IPMI'11 Proceedings of the 22nd international conference on Information processing in medical imaging
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a new geodesic approach for studying white matter connectivity from diffusion tensor imaging (DTI). Previous approaches have used the inverse diffusion tensor field as a Riemannian metric and constructed white matter tracts as geodesics on the resulting manifold. These geodesics have the desirable property that they tend to follow the main eigenvectors of the tensors, yet still have the flexibility to deviate from these directions when it results in lower costs. While this makes such methods more robust to noise, it also has the serious drawback that geodesics tend to deviate from the major eigenvectors in high-curvature areas in order to achieve the shortest path. In this paper we formulate a modification of the Riemannian metric that results in geodesics adapted to follow the principal eigendirection of the tensor even in high-curvature regions. We show that this correction can be formulated as a simple scalar field modulation of the metric and that the appropriate variational problem results in a Poisson's equation on the Riemannian manifold. We demonstrate that the proposed method results in improved geodesics using both synthetic and real DTI data.