Beamforming on mobile devices: a first study

  • Authors:
  • Hang Yu;Lin Zhong;Ashutosh Sabharwal;David Kao

  • Affiliations:
  • Rice University, Houston, TX, USA;Rice University, Houston, TX, USA;Rice University, Houston, TX, USA;Rice University, Houston, TX, USA

  • Venue:
  • MobiCom '11 Proceedings of the 17th annual international conference on Mobile computing and networking
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this work, we report the first study of an important realization of directional communication, beamforming, on mobile devices. We first demonstrate that beamforming is already feasible on mobile devices in terms of form factor, device mobility and power efficiency. Surprisingly, we show that by making an increasingly profitable tradeoff between transmit and circuit power, beamforming with state-of-the-art integrated CMOS implementations can be more power-efficient than its single antenna counterpart. We then investigate the optimal way of using beamforming in terms of device power efficiency, by allowing a dynamic number of active antennas. We propose a simple yet effective solution, BeamAdapt, which allows each mobile client in a network to individually identify the optimal number of active antennas with guaranteed convergence and close-to-optimal performance. We finally report a WARP-based prototype of BeamAdapt and experimentally demonstrate its effectiveness in realistic environments, and then complement the prototype-based experiments with Qualnet-based simulation of a large-scale network. Our results show that BeamAdapt with four antennas can reduce the power consumption of mobile clients by more than half compared to a single antenna, while maintaining a required network throughput.