Flattening fixed-angle chains is strongly NP-hard

  • Authors:
  • Erik D. Demaine;Sarah Eisenstat

  • Affiliations:
  • MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA;MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA

  • Venue:
  • WADS'11 Proceedings of the 12th international conference on Algorithms and data structures
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Planar configurations of fixed-angle chains and trees are well studied in polymer science and molecular biology. We prove that it is strongly NP-hard to decide whether a polygonal chain with fixed edge lengths and angles has a planar configuration without crossings. In particular, flattening is NP-hard when all the edge lengths are equal, whereas a previous (weak) NP-hardness proof used lengths that differ in size by an exponential factor. Our NP-hardness result also holds for (nonequilateral) chains with angles in the range [60° - ε, 180°], whereas flattening is known to be always possible (and hence polynomially solvable) for equilateral chains with angles in the range (60°, 150°) and for general chains with angles in the range [90°, 180°]. We also show that the flattening problem is strongly NP-hard for equilateral fixed-angle trees, even when every angle is either 90° or 180°. Finally, we show that strong NP-hardness carries over to the previously studied problems of computing the minimum or maximum span (distance between endpoints) among non-crossing planar configurations.