A Distributed Platform for Global-Scale Agent-Based Models of Disease Transmission

  • Authors:
  • Jon Parker;Joshua M. Epstein

  • Affiliations:
  • The Johns Hopkins University;The Johns Hopkins University

  • Venue:
  • ACM Transactions on Modeling and Computer Simulation (TOMACS)
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

The Global-Scale Agent Model (GSAM) is presented. The GSAM is a high-performance distributed platform for agent-based epidemic modeling capable of simulating a disease outbreak in a population of several billion agents. It is unprecedented in its scale, its speed, and its use of Java. Solutions to multiple challenges inherent in distributing massive agent-based models are presented. Communication, synchronization, and memory usage are among the topics covered in detail. The memory usage discussion is Java specific. However, the communication and synchronization discussions apply broadly. We provide benchmarks illustrating the GSAM’s speed and scalability.