Consistent reconstruction of cortical surfaces from longitudinal brain MR images

  • Authors:
  • Gang Li;Jingxin Nie;Dinggang Shen

  • Affiliations:
  • Department of Radiology and BRIC, University of North Carolina at Chapel Hill;Department of Radiology and BRIC, University of North Carolina at Chapel Hill;Department of Radiology and BRIC, University of North Carolina at Chapel Hill

  • Venue:
  • MICCAI'11 Proceedings of the 14th international conference on Medical image computing and computer-assisted intervention - Volume Part II
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Accurate and consistent reconstruction of cortical surfaces from longitudinal human brain MR images is of great importance in studying subtle morphological changes of the cerebral cortex. This paper presents a new deformable surface method for consistent and accurate reconstruction of inner, central and outer cortical surfaces from longitudinal MR images. Specifically, the cortical surfaces of the group-mean image of all aligned longitudinal images of the same subject are first reconstructed by a deformable surface method driven by a force derived from the Laplace's equation. And then the longitudinal cortical surfaces are consistently reconstructed by jointly deforming the cortical surfaces from the group-mean image to all longitudinal images. The proposed method has been successfully applied to both simulated and real longitudinal images, demonstrating its validity.