A multi-core numerical framework for characterizing flow in oil reservoirs

  • Authors:
  • Christopher R. Leonardi;David W. Holmes;John R. Williams;Peter G. Tilke

  • Affiliations:
  • Civil and Environmental Engineering, Massachusetts Institute of Technology, Massachusetts Avenue, Cambridge, MA;James Cook University, Angus Smith Drive, Douglas, QLD, Australia;Civil and Environmental Engineering and Engineering Systems, Massachusetts Institute of Technology, Massachusetts Avenue, Cambridge, MA;Schlumberger-Doll Research Center, Hampshire Street, Cambridge, MA

  • Venue:
  • Proceedings of the 19th High Performance Computing Symposia
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents a numerical framework that enables scalable, parallel execution of engineering simulations on multi-core, shared memory architectures. Distribution of the simulations is done by selective hash-tabling of the model domain which spatially decomposes it into a number of orthogonal computational tasks. These tasks, the size of which is critical to optimal cache blocking and consequently performance, are then distributed for execution to multiple threads using the previously presented task management algorithm, H-Dispatch. Two numerical methods, smoothed particle hydrodynamics (SPH) and the lattice Boltzmann method (LBM), are discussed in the present work, although the framework is general enough to be used with any explicit time integration scheme. The implementation of both SPH and the LBM within the parallel framework is outlined, and the performance of each is presented in terms of speed-up and efficiency. On the 24-core server used in this research, near linear scalability was achieved for both numerical methods with utilization efficiencies up to 95%. To close, the framework is employed to simulate fluid flow in a porous rock specimen, which is of broad geophysical significance, particularly in enhanced oil recovery.