From Gene Trees to Species Trees II: Species Tree Inference by Minimizing Deep Coalescence Events

  • Authors:
  • Louxin Zhang

  • Affiliations:
  • National University of Singapore, Singapore

  • Venue:
  • IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB)
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

When gene copies are sampled from various species, the resulting gene tree might disagree with the containing species tree. The primary causes of gene tree and species tree discord include incomplete lineage sorting, horizontal gene transfer, and gene duplication and loss. Each of these events yields a different parsimony criterion for inferring the (containing) species tree from gene trees. With incomplete lineage sorting, species tree inference is to find the tree minimizing extra gene lineages that had to coexist along species lineages; with gene duplication, it becomes to find the tree minimizing gene duplications and/or losses. In this paper, we present the following results: 1) The deep coalescence cost is equal to the number of gene losses minus two times the gene duplication cost in the reconciliation of a uniquely leaf labeled gene tree and a species tree. The deep coalescence cost can be computed in linear time for any arbitrary gene tree and species tree. 2) The deep coalescence cost is always not less than the gene duplication cost in the reconciliation of an arbitrary gene tree and a species tree. 3) Species tree inference by minimizing deep coalescence events is NP-hard.