Keyword-Driven SPARQL Query Generation Leveraging Background Knowledge

  • Authors:
  • Saeedeh Shekarpour;Soren Auer;Axel-Cyrille Ngonga Ngomo;Daniel Gerber;Sebastian Hellmann;Claus Stadler

  • Affiliations:
  • -;-;-;-;-;-

  • Venue:
  • WI-IAT '11 Proceedings of the 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology - Volume 01
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

The search for information on the Web of Data is becoming increasingly difficult due to its dramatic growth. Especially novice users need to acquire both knowledge about the underlying ontology structure and proficiency in formulating formal queries (e. g. SPARQL queries) to retrieve information from Linked Data sources. So as to simplify and automate the querying and retrieval of information from such sources, we present in this paper a novel approach for constructing SPARQL queries based on user-supplied keywords. Our approach utilizes a set of predefined basic graph pattern templates for generating adequate interpretations of user queries. This is achieved by obtaining ranked lists of candidate resource identifiers for the supplied keywords and then injecting these identifiers into suitable positions in the graph pattern templates. The main advantages of our approach are that it is completely agnostic of the underlying knowledge base and ontology schema, that it scales to large knowledge bases and is simple to use. We evaluate17 possible valid graph pattern templates by measuring their precision and recall on 53 queries against DBpedia. Our results show that 8 of these basic graph pattern templates return results with a precision above 70%. Our approach is implemented as a Web search interface and performs sufficiently fast to return instant answers to the user even with large knowledge bases.