Maximum metric spanning tree made Byzantine tolerant

  • Authors:
  • Swan Dubois;Toshimitsu Masuzawa;Sébastien Tixeuil

  • Affiliations:
  • UPMC Sorbonne Universités & INRIA, France;Osaka University, Japan;UPMC Sorbonne Universités & Institut Universitaire de France, France

  • Venue:
  • DISC'11 Proceedings of the 25th international conference on Distributed computing
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Self-stabilization is a versatile approach to fault-tolerance since it permits a distributed system to recover from any transient fault that arbitrarily corrupts the contents of all memories in the system. Byzantine tolerance is an attractive feature of distributed systems that permits to cope with arbitrary malicious behaviors. This paper focuses on systems that are both self-stabilizing and Byzantine tolerant. We consider the well known problem of constructing a maximum metric tree in this context. Combining these two properties is known to induce many impossibility results. In this paper, we first provide two new impossibility results about the construction of a maximum metric tree in presence of transient and (permanent) Byzantine faults. Then, we propose a new self-stabilizing protocol that provides optimal containment to an arbitrary number of Byzantine faults.