Tolerance to Unbounded Byzantine Faults

  • Authors:
  • Mikhail Nesterenko;Anish Arora

  • Affiliations:
  • -;-

  • Venue:
  • SRDS '02 Proceedings of the 21st IEEE Symposium on Reliable Distributed Systems
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

An ideal approach to deal with faults in large-scale distributed systems is to contain the effects of faults as locally as is possible and, additionally, to ensure some type of tolerance within each fault-affected locality. Existing results using this approach accommodate only limited faults (such as crushes) or assume that fault occurrence is bounded in space and/or time. In this paper, we define and explore possibility/impossibility of local tolerance with respect to arbitrary faults (such as Byzantine faults) whose occurrence may be unbounded in space and in time. Our positive results include programs for graph coloring and dining philosophers, withproofs that the size of their tolerance locality is optimal. The type of tolerance achieved within fault-affected localities is self-stabilization. That is, starting from an arbitrary state of the distributed system, each non-faulty process eventually reaches a state from where it behaves correctly as long as the only faults that occur henceforth (regardless of their number) are outside the locality of this process.