Weisfeiler-Lehman Graph Kernels

  • Authors:
  • Nino Shervashidze;Pascal Schweitzer;Erik Jan van Leeuwen;Kurt Mehlhorn;Karsten M. Borgwardt

  • Affiliations:
  • -;-;-;-;-

  • Venue:
  • The Journal of Machine Learning Research
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this article, we propose a family of efficient kernels for large graphs with discrete node labels. Key to our method is a rapid feature extraction scheme based on the Weisfeiler-Lehman test of isomorphism on graphs. It maps the original graph to a sequence of graphs, whose node attributes capture topological and label information. A family of kernels can be defined based on this Weisfeiler-Lehman sequence of graphs, including a highly efficient kernel comparing subtree-like patterns. Its runtime scales only linearly in the number of edges of the graphs and the length of the Weisfeiler-Lehman graph sequence. In our experimental evaluation, our kernels outperform state-of-the-art graph kernels on several graph classification benchmark data sets in terms of accuracy and runtime. Our kernels open the door to large-scale applications of graph kernels in various disciplines such as computational biology and social network analysis.