Decoding of ternary error correcting output codes

  • Authors:
  • Sergio Escalera;Oriol Pujol;Petia Radeva

  • Affiliations:
  • Computer Vision Center, Dept. Computer Science, UAB, Bellaterra, Spain;Dept. Matemàtica Aplicada i Anàlisi, UB, Barcelona, Spain;Computer Vision Center, Dept. Computer Science, UAB, Bellaterra, Spain

  • Venue:
  • CIARP'06 Proceedings of the 11th Iberoamerican conference on Progress in Pattern Recognition, Image Analysis and Applications
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Error correcting output codes (ECOC) represent a successful extension of binary classifiers to address the multiclass problem. Lately, the ECOC framework was extended from the binary to the ternary case to allow classes to be ignored by a certain classifier, allowing in this way to increase the number of possible dichotomies to be selected. Nevertheless, the effect of the zero symbol by which dichotomies exclude certain classes from consideration has not been previously enough considered in the definition of the decoding strategies. In this paper, we show that by a special treatment procedure of zeros, and adjusting the weights at the rest of coded positions, the accuracy of the system can be increased. Besides, we extend the main state-of-art decoding strategies from the binary to the ternary case, and we propose two novel approaches: Laplacian and Pessimistic Beta Density Probability approaches. Tests on UCI database repository (with different sparse matrices containing different percentages of zero symbol) show that the ternary decoding techniques proposed outperform the standard decoding strategies.