Quantum strategic game theory

  • Authors:
  • Shengyu Zhang

  • Affiliations:
  • The Chinese University of Hong Kong

  • Venue:
  • Proceedings of the 3rd Innovations in Theoretical Computer Science Conference
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

We propose a simple yet rich model to extend strategic games to the quantum setting, in which we define quantum Nash and correlated equilibria and study the relations between classical and quantum equilibria. Unlike all previous work that focused on qualitative questions on specific games of very small sizes, we quantitatively address the following fundamental question for general games of growing sizes: How much "advantage" can playing quantum strategies provide, if any? Two measures of the advantage are studied. 1. Since game mainly is about each player trying to maximize individual payoff, a natural measure is the increase of payoff by playing quantum strategies. We consider natural mappings between classical and quantum states, and study how well those mappings preserve equilibrium properties. Among other results, we exhibit a correlated equilibrium p whose quantum superposition counterpart [EQUATION] is far from being a quantum correlated equilibrium; actually a player can increase her payoff from almost 0 to almost 1 in a [0, 1]-normalized game. We achieve this by a tensor product construction on carefully designed base cases. The result can also be interpreted as in Meyer's comparison [47]: In a state no classical player can gain, one player using quantum computers has an huge advantage than continuing to play classically. 2. Another measure is the hardness of generating correlated equilibria, for which we propose to study correlation complexity, a new complexity measure for correlation generation. We show that there are n-bit correlated equilibria which can be generated by only one EPR pair followed by local operation (without communication), but need at least log2(n) classical shared random bits plus communication. The randomized lower bound can be improved to n, the best possible, assuming (even a much weaker version of) a recent conjecture in linear algebra. We believe that the correlation complexity, as a complexity-theoretical counterpart of the celebrated Bell's inequality, has independent interest in both physics and computational complexity theory and deserves more explorations.