Sherali-Adams relaxations and indistinguishability in counting logics

  • Authors:
  • Albert Atserias;Elitza Maneva

  • Affiliations:
  • Universitat Politècnica de Catalunya, Barcelona, Spain;Universitat de Barcelona, Barcelona, Spain

  • Venue:
  • Proceedings of the 3rd Innovations in Theoretical Computer Science Conference
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Two graphs with adjacency matrices A and B are isomorphic if there exists a permutation matrix P for which the identity PTAP = B holds. Multiplying through by P and relaxing the permutation matrix to a doubly stochastic matrix leads to the linear programming relaxation known as fractional isomorphism. We show that the levels of the Sherali-Adams (SA) hierarchy of linear programming relaxations applied to fractional isomorphism interleave in power with the levels of a well-known color-refinement heuristic for graph isomorphism called the Weisfeiler-Lehman algorithm, or equivalently, with the levels of indistinguishability in a logic with counting quantifiers and a bounded number of variables. This tight connection has quite striking consequences. For example, it follows immediately from a deep result of Grohe in the context of logics with counting quantifiers, that a fixed number of levels of SA suffice to determine isomorphism of planar and minor-free graphs. We also offer applications both in finite model theory and polyhedral combinatorics. First, we show that certain properties of graphs, such as that of having a flow-circulation of a prescribed value, are definable in the infinitary logic with counting with a bounded number of variables. Second, we exploit a lower bound construction due to Cai, Fürer and Immerman in the context of counting logics to give simple explicit instances that show that the SA relaxations of the vertex-cover and cut polytopes do not reach their integer hulls for up to Ω(n) levels, where n is the number of vertices in the graph.