Integrality gaps for Sherali-Adams relaxations

  • Authors:
  • Moses Charikar;Konstantin Makarychev;Yury Makarychev

  • Affiliations:
  • Princeton University, Princeton, NJ, USA;IBM T.J. Watson Research Center, Yorktown Heights, NY, USA;Microsoft Research New England, Cambridge, MA, USA

  • Venue:
  • Proceedings of the forty-first annual ACM symposium on Theory of computing
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

We prove strong lower bounds on integrality gaps of Sherali-Adams relaxations for MAX CUT, Vertex Cover, Sparsest Cut and other problems. Our constructions show gaps for Sherali-Adams relaxations that survive nδ rounds of lift and project. For MAX CUT and Vertex Cover, these show that even nδ rounds of Sherali-Adams do not yield a better than 2-ε approximation. The main combinatorial challenge in constructing these gap examples is the construction of a fractional solution that is far from an integer solution, but yet admits consistent distributions of local solutions for all small subsets of variables. Satisfying this consistency requirement is one of the major hurdles to constructing Sherali-Adams gap examples. We present a modular recipe for achieving this, building on previous work on metrics with a local-global structure. We develop a conceptually simple geometric approach to constructing Sherali-Adams gap examples via constructions of consistent local SDP solutions. This geometric approach is surprisingly versatile. We construct Sherali-Adams gap examples for Unique Games based on our construction for MAX CUT together with a parallel repetition like procedure. This in turn allows us to obtain Sherali-Adams gap examples for any problem that has a Unique Games based hardness result (with some additional conditions on the reduction from Unique Games). Using this, we construct 2-ε gap examples for Maximum Acyclic Subgraph that rules out any family of linear constraints with support at most nδ.