Approximation schemes via Sherali-Adams hierarchy for dense constraint satisfaction problems and assignment problems

  • Authors:
  • Yuichi Yoshida;Yuan Zhou

  • Affiliations:
  • National Institute of Informatics & Preferred Infrastructure, Inc., Tokyo, Japan;Carnegie Mellon University, Pittsburgh, PA, USA

  • Venue:
  • Proceedings of the 5th conference on Innovations in theoretical computer science
  • Year:
  • 2014

Quantified Score

Hi-index 0.00

Visualization

Abstract

We consider approximation schemes for the maximum constraint satisfaction problems and the maximum assignment problems. Though they are NP-Hard in general, if the instance is "dense" or "locally dense", then they are known to have approximation schemes that run in polynomial time or quasi-polynomial time. In this paper, we give a unified method of showing these approximation schemes based on the Sherali-Adams linear programming relaxation hierarchy. We also use our linear programming-based framework to show new algorithmic results on the optimization version of the hypergraph isomorphism problem.