Linear programming relaxations of maxcut

  • Authors:
  • Wenceslas Fernandez de la Vega;Claire Kenyon-Mathieu

  • Affiliations:
  • -;-

  • Venue:
  • SODA '07 Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

It is well-known that the integrality gap of the usual linear programming relaxation for Maxcut is 2 - ε. For general graphs, we prove that for any ε and any fixed bound k, adding linear constraints of support bounded by k does not reduce the gap below 2 - ε. We generalize this to prove that for any ε and any fixed bound k, strengthening the usual linear programming relaxation by doing κ rounds of Sherali-Adams lift-and-project does not reduce the gap below 2 - ε. On the other hand, we prove that for dense graphs, this gap drops to 1 + ε after adding all linear constraints of support bounded by some constant depending on ε.