Computational grid-based 3-tier ART1 data mining for bioinformatics applications

  • Authors:
  • Kyu Cheol Cho;Da Hye Park;Jong Sik Lee

  • Affiliations:
  • School of Computer Science and Engineering, Inha University, Incheon, South Korea;School of Computer Science and Engineering, Inha University, Incheon, South Korea;School of Computer Science and Engineering, Inha University, Incheon, South Korea

  • Venue:
  • FSKD'06 Proceedings of the Third international conference on Fuzzy Systems and Knowledge Discovery
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Computational Grid technology has been noticed as an issue to solve large-scale bioinformatics-related problems and improves data accuracy and processing speed on multiple computation platforms with distributed bioDATA sets. This paper focuses on a GPCR data mining processing which is an important bioinformatics application. This paper proposes a Grid-based 3-tier ART1 classifier which operates an ART1 clustering data mining using grid computational resources with distributed GPCR data sets. This Grid-based 3-tier ART1 classifier is able to process a large-scale bioinformatics application in guaranteeing high bioDATA accuracy with reasonable processing resources. This paper evaluates performance of the Grid-based ART1 classifier in comparing to the ART1-based classifier and the ART1 optimum classifier. The data mining processing time of the Grid-based ART1 classifier is 18% data mining processing time of the ART1 optimum classifier and is the 12% data mining processing time of the ART1-based classifier. And we evaluate performance of the Grid-based 3-tier ART1 classifier in comparing to the Grid-based ART1 classifier. As data sets become larger, data mining processing time of the Grid-based 3-tier ART1 classifier more decrease than that of the Grid-based ART1 classifier. Computational Grid in bioinformatics applications gives a great promise of high performance processing with large-scale and geographically distributed bioDATA sets.